บทที่ 2 : พันธะเคมี

ชนิดของพันธะเคมี

พันธะภายในโมเลกุล
(intramolecular bond)
พันธะระหว่างโมเลกุล
(intermolecular bond)
พันธะโคเวเลนต์ (covalent bonds)
พันธะไฮโดรเจน (hydrogen bonds)
พันธะไอออนิก (ionic bonds)
แรงแวนเดอร์วาลส์ (Van der Waals forces)
พันธะโลหะ ( metallic bonds)
แรงดึงดูดระหว่างโมเลกุล - ไอออน
(molecule-ion attractions)

พันธะไอออนิก  แรงยึดเหนี่ยวที่เกิดในสารประกอบที่เกิดขึ้นระหว่าง 2 อะตอมอะตอมที่มีค่าอิเล็กโตรเนกาติวิตีต่างกันมาก และทำให้อิเล็กตรอนที่อยู่รอบๆ อะตอมครบ 8 (octat rule ) กลายเป็นไอออนบวก และไอออนลบตามลำดับ เกิดแรงดึงดูดทางไฟฟ้าระหว่างไอออนบวกและไอออนลบ และเกิดเป็นโมเลกุลขึ้น เช่น การเกิดสารประกอบ NaCl ดังภาพ



สมบัติของสารประกอบไอออนิก
1. มีขั้ว เพราะสารประกอบไอออนิกไม่ได้เกิดขึ้นเป็นโมเลกุลเดี่ยว แต่จะเป็นของแข็งซึ่งประกอบด้วยไอออนจำนวนมาก ซึ่งยึดเหนี่ยวกันด้วยแรงยึดเหนี่ยวทางไฟฟ้า

2. ไม่นำไฟฟ้าเมื่ออยู่ในสภาพของแข็ง แต่จะนำไฟฟ้าได้เมื่อใส่สารประกอบไอออนิกลงในน้ำ ไอออนจะแยกออกจากกัน ทำให้สารละลายนำไฟฟ้าในทำนองเดียวกันสารประกอบที่หลอมเหลวจะนำไฟฟ้าได้ด้วยเนื่องจากเมื่อหลอมเหลวไอออนจะเป็นอิสระจากกัน เกิดการไหลเวียนอิเลคตรอนทำให้       อิเลคตรอนเคลื่อนที่จึงเกิดการนำไฟฟ้า

3 . มีจุหลอมเหลวและจุดเดือดสูง      ความร้อนในการทำลายแรงดึงดูดระหว่างไอออนให้กลายเป็นของเหลวต้องใช้พลังงานสูง

4 . สารประกอบไอออนิกทำให้เกิดปฏิกิริยาไอออนิก คือ ปฏิกิริยาระหว่างไอออนกับไอออน ทั้งนี้เพราะสารไอออนิกจะเป็นไอออนอิสระในสารละลาย ปฏิกิริยาจึงเกิดทันที

5 . สมบัติไม่แสดงทิศทางของพันธะไอออนิก สารประกอบไอออนิกเกิดจากไอออนที่มีประจุตรงกันข้ามรอบ ๆ ไอออนแต่ละไอออนจะมีสนามไฟฟ้าซึ่งไม่มีทิศทาง จึงทำให้เกิดสมบัติไม่แสดงทิศทางของพันธะไอออนิก

6. เป็นผลึกแข็ง แต่เปราะและแตกง่าย


การอ่านชื่อสารประกอบไออนิก
  • กรณีเป็นสารประกอบธาตุคู่ ให้อ่านชื่อธาตุที่เป็นประจุบวก แล้วตามด้วยธาตุประจุลบ โดยลงท้ายเสียงพยางค์ท้ายเป็น “ ไอด์” (ide) เช่น
กล่องข้อความ: NaCl    อ่านว่า  โซเดียมคลอไรด์  Na2O    อ่านว่า  โซเดียมออกไซด์  CaF2 อ่านว่า  แคลเซียมฟูออไรด์
  • กรณีเป็นสารประกอบธาตุมากกว่าสองชนิด ให้อ่านชื่อธาตุที่เป็นประจุบวก แล้วตามด้วยกลุ่มธาตุที่เป็นประจุลบได้เลย เช่น
กล่องข้อความ: Na2SO4    อ่านว่า  โซเดียมซัลเฟต  CaCO3   อ่านว่า  แคลเซียมคาร์บอเนต  NH4NO3   อ่านว่า  แอมโมเนียมไนเตรต
  • กรณีเป็นสารประกอบธาตุโลหะทรานซิชัน ให้อ่านชื่อธาตุที่เป็นประจุบวกและจำนวนเลขออกซิเดชันหรือค่าประจุของธาตุเสียก่อน โดยวงเล็บเป็นเลขโรมัน แล้วจึงตามด้วยธาตุประจุลบ เช่น
กล่องข้อความ: CuSO4  อ่านว่า  คอปเปอร์ (II) ซัลเฟต  FeCl2 อ่านว่า  ไอร์รอน (II) คลอไรด์  FeCl3 อ่านว่า  ไอร์รอน (III) คลอไรด์     



พันธะโควาเลนต์  พันธะในสารประกอบที่เกิดขึ้นระหว่างอะตอม 2 อะตอมที่มีค่าอิเล็กโตรเนกาติวิตีใกล้เคียงกันหรือเท่ากัน แต่ละอะตอมต่างมีความสามารถที่จะดึงอิเล็กตรอนไว้กับตัว อิเล็กตรอนคู่ร่วมพันธะจึงไม่ได้อยู่ ณ อะตอมใดอะตอมหนึ่งแล้วเกิดเป็นประจุเหมือนพันธะไอออนิก หากแต่เหมือนการใช้อิเล็กตรอนร่วมกันระหว่างอะตอมคู่ร่วมพันธะนั้นๆและมีจำนวนอิเล็กตรอนอยู่รอบๆ แต่ละอะตอมเป็นไปตามกฎออกเตต ดังภาพ



1. พันธะเดี่ยว (Single covalent bond )เกิดจากการใช้อิเล็กตรอนร่วมกัน 1 อิเล็กตรอน เช่น F2 Cl2 CH4 เป็นต้น

2. พันธะคู่ ( Doublecovalent bond ) เกิดจากการใช้อิเล็กตรอนร่วมกันของธาตุทั้งสองเป็นคู่ หรือ 2 อิเล็กตรอน เช่น O2 CO2 C2H4 เป็นต้น
3. พันธะสาม ( Triple covalent bond ) เกิดจากการใช้อิเล็กตรอนร่วมกัน 3 อิเล็กตรอน ของธาตุทั้งสอง เช่น N2 C2H2 เป็นต้น

การอ่านชื่อสารประกอบโควาเลนซ์

กล่องข้อความ: 1   อ่าน  มอนอ (mono-) 6   อ่าน  เฮกซะ (Hexa-)  2   อ่าน  ได (Di-)    7   อ่าน  เฮปตะ (Hepta-)  3   อ่าน  ไตร (Tri-)     8   อ่าน  ออกตะ (Oxta-)  4   อ่าน  เตตระ (Tetra-) 9   อ่าน  โมนะ (Mona-)  5   อ่าน เพนตะ (Penta-) 10 อ่าน  เดคะ (Deca-)

กล่องข้อความ: ตัวอย่าง  N2O3    อ่านว่า  ไดไนโตรเจนไตรออกไซด์  PCl5 อ่านว่า  ฟอสฟอรัสเพนตะคลอไรด์  CO อ่านว่า  คาร์บอนมอนอกไซด์     


กล่องข้อความ: โครงสร้างโมเลกุลโควาเลนต์ขนาดยักษ์   โครงสร้างโมเลกุลโควาเลนต์ขนาดยักษ์ของคาร์บอนกับคาร์บอน มีการจัดเรียงตัวได้  2  แบบคือ แบบแรกอะตอมของคาร์บอนจะเรียงตัวกันเป็นแผ่นราบรูปหกเหลี่ยมด้านเท่า ได้แก่ โครงสร้างของกราไฟต์ (graphite) และแบบที่สองอะตอมของคาร์บอนจะเรียงตัวกันเป็นรูปพีระมิด ได้แก่ โครงสร้างของเพชร (diamond)                                            โครงสร้างโมเลกุลของกราไฟต์                                       โครงสร้างโมเลกุลของเพชร      นอกจากนี้  H.W. Kroto แห่ง Sussex University ประเทศอังกฤษ และ R.F. Smaller กับ R.F. Curl แห่ง Rice University ประเทศสหรัฐอเมริกา ที่ได้รับรางวัลรางวัลโนเบล ประจำปี พ.ศ.2539  จากการค้นพบโมเลกุลของคาร์บอนรูปแบบใหม่ที่ R. Buckminster Fuller สถาปนิกชาวอังกฤษเป็นผู้คิดสร้างขึ้น จึงมีชื่อเป็นทางการว่า buckminster fullerene หรือชื่อเล่นว่า buckyball (C-60) โดยที่โครงสร้างมีลักษณะกลมคล้ายลูกฟุตบอล       โครงสร้างโมเลกุลของ buckyball    เมื่อไม่นานมานี้นักวิทยาศาสตร์สามารถสังเคราะห์โมเลกุลของคาร์บอนที่มีขนาดโมเลกุลใหญ่กว่า C60 ได้ เช่น C70 , C240 , C540 ซึ่งมีชื่อเรียกว่า super fullerene และ C960 ซึ่งมีชื่อเรียกว่า hyper fullerene ซึ่งขณะนี้นักวิทยาศาสตร์ยังทำการค้นคว้าวิจัยโมเลกุลของคาร์บอนต่อไป ดังนั้นในอนาคตเราคงได้เห็นเทคโนโลยีใหม่ ๆ ที่จะมีประโยชน์ต่อมนุษย์ต่อไป

การพิจารณารูปร่างโมเลกุลโควาเลนต์  
โมเลกุลโควาเลนต์ในสามมิตินั้น สามารถพิจารณาได้จากการผลักกันของอิเล็กตรอนที่มีอยู่รอบๆ อะตอมกลางเป็นสำคัญ โดยอาศัยหลักการที่ว่า อิเล็กตรอนเป็นประจุลบเหมือนๆ กัน ย่อมพยายามที่แยกตัวออกจากกนให้มากที่สุดเท่าที่จะกระทำได้ ดังนั้นการพิจารณาหาจำนวนกลุ่มของอิเล็กตรอนที่อยู่รอบๆ นิวเคลียสและอะตอมกลาง จะสามารถบ่งบอกถึงโครงสร้างของโมเลกุลนั้น ๆ ได้ โดยที่กลุ่มต่างๆ มีดังนี้
- อิเล็กตรอนคู่โดดเดี่ยว
- อิเล็กตรอนคู่รวมพันธะได้แก่ พันธะเดี่ยว พันธะคู่ และพันธะสาม



ภาพแสดงรูปร่างโครงสร้างโมเลกุลโควาเลนต์แบบต่างๆ ตามทฤษฎี VSEPR
หมายเหตุ A คือ จำนวนอะตอมกลาง (สีแดง)
X คือ จำนวน อิเล็กตรอนคู่รวมพันธะ (สีน้ำเงิน)
E คือ จำนวนอิเล็กตรอนคู่โดดเดี่ยว (สีเขียว)

แรงยึดเหนี่ยวระหว่างโมเลกุล ( Van de waals interaction)
เนื่องจากโมเลกุลโควาเลนต์ปกติจะไม่ต่อเชื่อมกันแบบเป็นร่างแหอย่างพันธะโลหะหรือไอออนิก แต่จะมีขอบเขตที่แน่นอนจึงต้องพิจารณาแรงยึดเหนี่ยวระหว่างโมเลกุลด้วย ซึ่งจะเป็นส่วนที่ใช้อธิบายสมบัติทางกายภาพของโมเลกุลโควาเลนต์ อันได้แก่ ความหนาแน่น จุดเดือด จุดหลอมเหลว หรือความดันไอได้ โดยแรงยึดเหนี่ยวระหว่างโมเลกุลนั้นเกิดจากแรงดึงดูดเนื่องจากความแตกต่างของประจุเป็นสำคัญ ได้แก่
1. แรงลอนดอน ( London Force) เป็นแรงที่เกิดจากการดึงดูดทางไฟฟ้าของโมเลกุลที่ไม่มีขั้วซึ่งแรงดึงดูดทางไฟฟ้า

อิเล็กตรอนสม่ำเสมอ........................อิเล็กตรอนมีการเปลี่ยนแปลงตามเวลา
ดังนั้นยิ่งโมเลกุลมีขนาดใหญ่ก็จุยิ่งมีโอกาสที่อิเลคตรอนเคลื่อนที่ได้เสียสมดุลมาก

2. แรงดึงดูดระหว่างขั้ว เป็นแรงยึดเหนี่ยวที่เกิดระหว่างโมเลกุลที่มีขั้วสองโมเลกุลขึ้นไปเป็นแรงดึงดูดทางไฟฟ้าที่แข็งแรงกว่าแรงลอนดอน

3. พันธะไฮโดรเจน ( hydrogen bond ) เป็นแรงยึดเหนี่ยวที่มีค่าสูงมาก โดยเกิดระหว่างไฮโดรเจนกับธาตุที่มีอิเล็กตรอนคู่โดดเดี่ยวเหลือ เกิดขึ้นได้ต้องมีปัจจัยต่างๆ

สภาพขั้วของโมเลกุลน้ำและก๊าซคาร์บอนไดออกไซด์


การเกิดพันธะไฮโดรเจนของโมเลกุลน้ำ




พันธะโลหะ (Metallic Bond ) คือ แรงดึงดูดระหว่างไออนบวกซึ่งเรียงชิดกันกับอิเล็กตรอนที่อยู่โดยรอบหรือเป็นแรงยึดเหนี่ยวที่เกิดจากอะตอมในก้อนโลหะใช้เวเลนส์อิเล็กตรอนทั้งหมดร่วมกัน อิเล็กตรอนอิสระเกิดขึ้นได้ เพราะโลหะมีวาเลนส์อิเล็กตรอนน้อยและมีพลังงานไอออไนเซชันต่ำ จึงทำให้เกิดกลุ่มของอิเล็กตรอนและไอออนบวกได้ง่าย
พลังงานไอออไนเซชันของโลหะมีค่าน้อยมาก   แสดงว่าอิเล็กตรอนในระดับนอกสุดของโลหะถูกยึดเหนี่ยวไว้ไม่แน่นหนา   อะตอมเหล่านี้จึงเสียอิเล็กตรอนกลายเป็นไอออนบวกได้ง่าย


สมบัติของโลหะ
  • เป็นตัวนำไฟฟ้าได้ดี เพราะมีอิเล็กตรอนเคลื่อนที่ไปได้ง่ายทั่วทั้งก้อนของโลหะ   แต่โลหะนำไฟฟ้าได้น้อยลงเมื่ออุณหภูมิสูงขึ้น   เนื่องจากไอออนบวกมีการสั่นสะเทือนด้วยความถี่และช่วงกว้างที่สูงขึ้นทำให้อิเล็กตรอนเคลื่อนที่ไม่สะดวก
  • โลหะนำความร้อนได้ดี  เพราะมีอิเล็กตรอนที่เคลื่อนที่ได้   โดยอิเล็กตรอนซึ่งอยู่ตรงตำแหน่งที่มีอุณหภูมิสูง  จะมีพลังงานจลน์สูง และอิเล็กตรอนที่มีพลังงานจลน์สูงจะเคลื่อนที่ไปยังส่วนอื่นของโลหะจึงสามารถถ่ายเทความร้อนให้แก่ส่วนอื่น ๆ ของแท่งโลหะที่มีอุณหภูมิต่ำกว่าได้ 
  • โลหะตีแผ่เป็นแผ่นหรือดึงออกเป็นเส้นได้   เพราะไอออนบวกแต่ละไอออนอยู่ในสภาพเหมือนกันๆ กัน   และได้รับแรงดึงดูดจากประจุลบเท่ากันทั้งแท่งโลหะ ไอออนบวกจึงเลื่อนไถลผ่านกันได้โดยไม่หลุดจากกัน   เพราะมีกลุ่มของอิเล็กตรอนทำหน้าที่คอยยึดไอออนบวกเหล่านี้ไว้
  • โลหะมีผิวเป็นมันวาว   เพราะกลุ่มของอิเล็กตรอนที่เคลื่อนที่ได้โดยอิสระจะรับและกระจายแสงออกมา   จึงทำให้โลหะสามารถสะท้อนแสงซึ่งเป็นคลื่นแม่เหล็กไฟฟ้าได้
  • โลหะมีจุดหลอมเหลวสูง  เพราะพันธะในโลหะ   เป็นพันธะที่เกิดจากแรงยึดเหนี่ยวระหว่างวาเลนซ์อิเล็กตรอนอิสระทั้งหมดในด้อนโลหะกับไอออนบวกจึงเป็นพันธะที่แข็งแรงมาก 
http://nakhamwit.ac.th/pingpong_web/ChenBond.htm

ไม่มีความคิดเห็น:

แสดงความคิดเห็น